新型耐微生物腐蚀双相不锈钢问世
信息来源:求和不锈钢 时间:2019-04-09 15:58:50 浏览次数:-
对海洋工程装备用不锈钢而言,海水中的氯离子腐蚀和微生物腐蚀一直是世界公认的难题,世界上主要发达国家因此均设立了国家战略项目支持该领域的研究开发,但是都还没有很好地解决该问题。海洋工程材料的微生物腐蚀和生物污损问题每年给国家造成近万亿元的经济损失和30% 以上海中航行体的能源浪费,已成为严重制约重大海洋工程技术和装备发展的技术瓶颈之一,其导致的材料失效问题更是严重地影响到海洋工程装备的可靠性和寿命。因此,海洋工程材料的微生物腐蚀失效机理与防护技术已成为我国海洋工程领域中亟待解决的重大问题。
研究证实,导致海洋用金属结构件微生物腐蚀的主要原因就是金属表面细菌生物膜的生成。如果能有效抑制和杀灭粘附在金属材料表面的细菌生物膜,就能有效缓解或抑制微生物腐蚀的发生。因此,利用抗菌不锈钢的抗菌特性及其对细菌生物膜形成的抑制作用,从而提高不锈钢的抗微生物腐蚀能力,是一个富有创新性的新思路。
针对不锈钢在海洋环境中形成的细菌生物膜,在研究员杨柯的指导下,该研究团队的徐大可和杨春光近期成功地研发出一种具有耐微生物腐蚀能力的抗菌双相不锈钢(2205-Cu)。研究结果表明,2205-Cu不锈钢在2216E培养基条件下与引起海洋微生物腐蚀的铜绿假单胞菌(Pseudomonas aeruginosa)共培养7天后,杀菌率达到96.9%。共培养14天后,普通2205双相不锈钢表面上微生物腐蚀所导致的最深点蚀深度为9.50mm,而2205-Cu抗菌双相不锈钢表面上微生物腐蚀所导致的最深点蚀深度仅为1.44mm。通过极化曲线获得的腐蚀电流密度结果也显示,2205-Cu抗菌双相不锈钢具有极强的耐微生物腐蚀的能力,在2216E培养基条件下与铜绿假单胞菌共培养14天后,腐蚀电流密度仅为0.04μA cm-2,而普通2205双相不锈钢的腐蚀电流密度为0.20μA cm-2。
2205双相不锈钢是海洋环境下目前使用最广泛的双相不锈钢,近年来出现的关于海洋细菌腐蚀导致2205双相不锈钢失效的报道已经引起学者们的广泛关注。2205-Cu这种耐微生物腐蚀能力极强的抗菌双相不锈钢的问世填补了我国在海洋抗菌工程材料领域中的空白,该研究成果具有重要的学术意义与实际应用价值。
研究证实,导致海洋用金属结构件微生物腐蚀的主要原因就是金属表面细菌生物膜的生成。如果能有效抑制和杀灭粘附在金属材料表面的细菌生物膜,就能有效缓解或抑制微生物腐蚀的发生。因此,利用抗菌不锈钢的抗菌特性及其对细菌生物膜形成的抑制作用,从而提高不锈钢的抗微生物腐蚀能力,是一个富有创新性的新思路。
针对不锈钢在海洋环境中形成的细菌生物膜,在研究员杨柯的指导下,该研究团队的徐大可和杨春光近期成功地研发出一种具有耐微生物腐蚀能力的抗菌双相不锈钢(2205-Cu)。研究结果表明,2205-Cu不锈钢在2216E培养基条件下与引起海洋微生物腐蚀的铜绿假单胞菌(Pseudomonas aeruginosa)共培养7天后,杀菌率达到96.9%。共培养14天后,普通2205双相不锈钢表面上微生物腐蚀所导致的最深点蚀深度为9.50mm,而2205-Cu抗菌双相不锈钢表面上微生物腐蚀所导致的最深点蚀深度仅为1.44mm。通过极化曲线获得的腐蚀电流密度结果也显示,2205-Cu抗菌双相不锈钢具有极强的耐微生物腐蚀的能力,在2216E培养基条件下与铜绿假单胞菌共培养14天后,腐蚀电流密度仅为0.04μA cm-2,而普通2205双相不锈钢的腐蚀电流密度为0.20μA cm-2。
2205双相不锈钢是海洋环境下目前使用最广泛的双相不锈钢,近年来出现的关于海洋细菌腐蚀导致2205双相不锈钢失效的报道已经引起学者们的广泛关注。2205-Cu这种耐微生物腐蚀能力极强的抗菌双相不锈钢的问世填补了我国在海洋抗菌工程材料领域中的空白,该研究成果具有重要的学术意义与实际应用价值。